, на ПИТОНЕ Разложение на чётнопростые
В этой задаче рассматриваются только чётные целые числа.
Чётное натуральное число n будем называть чётнопростым числом, если его нельзя представить в виде произведения двух чётных чисел. Например, числа 2 и 6 — чётнопростые.
Очевидно, что каждое число либо является чётнопростым, либо разлагается в произведение чётнопростых. Но такое разложение на чётнопростые не всегда единственно.
Входные данные
Дано чётное натуральное n≤109.
Выходные данные
Если число n чётнопростое, выведите слово prime. Если это число единственным образом разлагается в произведение двух и более чётнопростых, то выведите слово single, а в следующей строке выведите разложение этого числа на чётнопростые множители. Если число допускает несколько различных разложений на чётнопростые, то выведите слово many, а в следующих двух строках выведите два каких-нибудь различных разложения числа на чётнопростые множители.
def solve(n):
d = 0
while not (n&1):
d += 1
n //= 2
a = [2]*d
a[-1] *= n
if d == 1:
print("prime")
return
for x in range(3, int(n**.5)+1, 2):
if not (n%x):
b = a[:]
b[-1] //= x
b[-2] *= x
print("many")
print(" ".join(map(str, a)))
print(" ".join(map(str, b)))
return
print("single")
print(" ".join(map(str, a)))
from sys import stdin
for line in stdin:
print("=== " + line.strip() + " ===")
solve(int(line))
Дайте плз 5 звёзд, мне очень не хватает "Лучших ответов"