Мистер фокс загадал позиционную систему счисления и предложил вам отгадать её. он обозначил цифры символами (каждая цифра заменена одним символом, одинаковые цифры заменены одинаковыми символами) и сообщил, что # - это 1 в десятичной системе, * - это 4 в десятичной системе, @ - это 7 в десятичной системе. чему равно #@* в десятичной системе счисления? комментарий. из сообщения мистера фокса не следует, что в загаданной системе счисления есть только три цифры. просто про остальные он ничего не сказал.
Итак:символ # это 1запись # * это 4запись # @ это 7
Найти, чему равна запись @ * #
Для того, чтобы это найти, нам надо узнать основание используемой здесь системы счисления. Обозначим его как x.Вспомним, что основание системы счисления- это целое число не меньше двух (x ≥ 2).
Рассмотрим запись числа четыре:
(это перевод числа из системы с основанием x в десятичную)Раз запись числа 4 состоит из двух разрядов, значит основание системы не может быть больше четырёх (x≤4).Ведь уже при основании пять (x = 5) вес второго разряда числа был бы равен пяти (), и всё число было бы явно больше четырёх.
Далее, рассмотрим запись числа семь:
Мы видим, что второй разряд не изменился- здесь тоже стоит единица. А само число увеличилось на три (7 - 4 = 3). Значит, на три увеличилась цифра в первом разряде (была *, стала @). То есть,
Итак, основание- это целое число, не меньше двух и не больше четырёх. Подходят всего три числа- 2, 3, 4.В каком из этих оснований системы можно прибавить к цифре три без переноса в следующий разряд?если основание 2 -то есть всего две цифры: 0 и 1если основание 3 -то есть три цифры: 0, 1 и 2если основание 4 -то четыре цифры: 0, 1, 2 и 3Такие цифры используются в одном разряде. И, если при сложении мы выходим за эти цифры, то произойдёт перенос в следующий разряд (чего у нас не было, во втором разряде осталась единица).
Получается, что в пределах одного разряда, тройку можно прибавить только в системе с основанием 4, причём только в одном случае (0 + 3 = 3).Значит:символ * это 0символ @ это 3а основание системы счисления равно четырём
Осталось перевести запись @ * # из четверичной в десятичную систему счисления:
ответ: 49