Рассмотрим треугольники МДО и КДР, у которых угол МДО = КДР, как вертикальные углы при пересечении прямых КО и РМ, угол ДРК треугольника КДР равен углу ОМД треугольника МДО, так как они накрест лежащие углы при пересечении параллельных прямых МО и КР секущей РМ. Тогда, по первому признаку подобия треугольников, треугольники МДО и КДР подобны.
1)Для решения рассмотрим рисунок
Рассмотрим треугольники МДО и КДР, у которых угол МДО = КДР, как вертикальные углы при пересечении прямых КО и РМ, угол ДРК треугольника КДР равен углу ОМД треугольника МДО, так как они накрест лежащие углы при пересечении параллельных прямых МО и КР секущей РМ. Тогда, по первому признаку подобия треугольников, треугольники МДО и КДР подобны.
Запишем отношение сторон подобных треугольников.
МО / КР = ДО / ДК.
12 / 16 = ДО / 20.
ДО = 12 * 20 / 16 = 15 см.
ответ: ДО = 15 см.
3) ВД =х, ДС=21-х,
ВД/ДС=АВ/АС, х/(21-х) = 18/24. 24х=378-18х, х=9 =ВД, ДС=21-9=12