завтра контрольная если сделаете огромное ! трапеция abcd вписана в окружность(рис.3), центр о которой лежит на большем основании ad. найдите радиус вписанной окружности, если cd=9 см, bd=12 см.
Дано: трапеция ABCD вписана в окружность с центром в т. О,
AD║BC, O∈AD, CD=9 см, BD=12 см
Найти: r - ?
В окружность можно вписать только равнобедренную трапецию
⇒ AB = CD = 9 см
ΔABD вписан в окружность по диаметру
⇒ ΔABD - прямоугольный. Теорема Пифагора
AD = 15 см
Вписать окружность можно только в тот четырёхугольник, у которого суммы противоположных сторон равны
BC+AD = AB+CD ⇒ BC = AB+CD-AD=9+9-15 = 3 см
ΔBCD : CD=9 см; BC=3 см; BD=12 см
3 + 9 = 12 - ΔBCD не может существовать, так как для него не выполняется неравенство треугольника: сумма двух сторон треугольника должна быть БОЛЬШЕ третьей стороны.
Следовательно, нет возможности выполнить условие для вписанной окружности, т. е. в данную трапецию вписать окружность НЕЛЬЗЯ.
Дано: трапеция ABCD вписана в окружность с центром в т. О,
AD║BC, O∈AD, CD=9 см, BD=12 см
Найти: r - ?
В окружность можно вписать только равнобедренную трапецию
⇒ AB = CD = 9 см
ΔABD вписан в окружность по диаметру
⇒ ΔABD - прямоугольный. Теорема Пифагора
AD = 15 см
Вписать окружность можно только в тот четырёхугольник, у которого суммы противоположных сторон равны
BC+AD = AB+CD ⇒ BC = AB+CD-AD=9+9-15 = 3 см
ΔBCD : CD=9 см; BC=3 см; BD=12 см
3 + 9 = 12 - ΔBCD не может существовать, так как для него не выполняется неравенство треугольника: сумма двух сторон треугольника должна быть БОЛЬШЕ третьей стороны.
Следовательно, нет возможности выполнить условие для вписанной окружности, т. е. в данную трапецию вписать окружность НЕЛЬЗЯ.