Заданы вершины треугольника А(1;–2), В(5;4), С(–2;0). Составить уравнение биссектрис его внутренних и внешних углов при вершине А.

nfz43616 nfz43616    2   10.12.2021 17:31    0

Ответы
smashsmash83p08jrb smashsmash83p08jrb  10.12.2021 17:40

Объяснение:

Незнаю

ПОКАЗАТЬ ОТВЕТЫ
nasipkalievnurz nasipkalievnurz  10.12.2021 17:40

Надеюсь понятно.

Объяснение:

A(xA; yA) = A(1; -2)

B(xB; yB) = B(5; 4)

C(xC; yC) = C(-2; 0)

I) Найдем длины сторон:

AB = √(xB - xA)2 + (yB - yA)2 = √(5 - 1)2 + (4 - (-2))2 = √42 + 62 = √16 + 36 =√52 = 2√13 = 7.211

AC = √(xC - xA)2 + (yC - yA)2 = √(-2 - 1)2 + (0 - (-2))2 = √(-3)2 + 22 = √9 + 4= √13 = 3.606

BC = √(xC - xB)2 + (yC - yB)2 = √(-2 - 5)2 + (0 - 4)2 = √(-7)2 + (-4)2 =√49 + 16 = √65 = 8.062

II) Составим уравнения биссектрис. A3, B3, C3 — точки пересечения биссектрис, проходящих через вершины A, B, C соответственно, со сторонами BC, AC, AB соответственно.AA3:(((yB - yA)/АВ) + ((yC - yA)/АС)) x + (((xA - xB)/АВ) + ((xA - xC)/АС)) y +(((xByA - xAyB)/АВ)+ (xCyA - xAyC)/АС)) =

=(((4 - (-2)/7,211) + (0 - (-2)/3,606)) x + (((1 - 5)/7,211) + (1 - (-2))/3,606) y + (((5 ∙ (-2))- (1 ∙ 4))/7,211) + (((-2) ∙ (-2) - 1 ∙ 0))/3,606) = 0

=1387x + 277y - 832 = 0.

В приложении даётся полный расчёт треугольника по координатам вершин. Там расчёт уравнений биссектрис под номером 18 дано с приведением коэффициента при х равным 1.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия