З точкі, що знаходится на відстані 8 см від прямої, проведено до неї дві похилі, які утворюють з прямою кути 30 і 45 градусів. Знайдіть відстань між основами похилих, скільки розв'язків має задача.

diankaa55 diankaa55    1   31.03.2021 15:28    0

Ответы
Ник0090 Ник0090  30.04.2021 15:29

См. Объяснение

Объяснение:

Задание

Из точки, которая находится на расстоянии 8 см от прямой, проведены к ней две наклонные, образующие с прямой углы 30 и 45 градусов. Найдите расстояние между основаниями наклонных, сколько решений имеет задача.

Вариант 1 - основания наклонных находятся по разные стороны от проекции точки на данную линию.

1) Длина проекции наклонной, образующей с ней угол 30°, равна:

8 · ctg 30° = 8√3 см

2) Длина проекции наклонной, образующей с ней угол 45°, равна:

8 · ctg 45° = 8 см

3) Расстояние между основаниями наклонных:

8√3 + 8 = 8 (√3 + 1) см ≈ 8 · (1,732 + 1) = 8 · 2,732 ≈ 21,86 см

Вариант 2 - основания наклонных находятся по одну сторону от проекции точки на данную линию.

1) Длина проекции наклонной, образующей с ней угол 30°, равна:

8 · ctg 30° = 8√3 см

2) Длина проекции наклонной, образующей с ней угол 45°, равна:

8 · ctg 45° = 8 см

3) Расстояние между основаниями наклонных:

8√3 - 8 = 8 (√3 - 1) см ≈ 8 · (1,732 - 1) = 8 · 0,732 ≈ 5,86 см

ответ: в данной задаче - 2 решения:

1) если основания наклонных находятся по разные стороны от проекции точки на данную линию, то расстояние между ними равно

8(√3+1) см ≈ 21,86 см;

2) если основания наклонных находятся по одну сторону от проекции точки на данную линию, то расстояние между ними равно

8(√3-1) см ≈ 5,86 см.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия