Высоту треугольной пирамиды, если все её боковые ребра по корень из 10 см, а стороны основания равны 5 см, 5 см, 6 см.

Tyyyooo Tyyyooo    3   04.06.2019 22:00    7

Ответы
Kornella Kornella  05.07.2020 16:59
Пирамида КАВС, в основании треугольнк АВС, АВ=ВС=5, АС=6, О-центр описанной окружности, КО-высота пирамиды, КА=КС=КВ=корень10, АО=СО=ВО=радиусы описанной окружности, проводим высоту ВН на АС=медиане, АН=НС=1/2Ас=6/2=3, треугольник АВН прямоугольный, ВН=корень(АВ в квадрате-АН в квадрате)=корень(25-9)=4, площадьАВС=1/2*АС*ВН=1/2*4*6=12, радиус описанной=(АВ*ВС*АС)/(4*площадьАВС)=(5*5*6)/(4*12)=3,125=25/8, треугольник АОК прямоугольный, КО-высота=(КА в квадрате-АО в квадрате)=корень(10-625/64)=корень15/8
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия