.(Вычислите площадь фигуры, ограниченной линиями: а) у=9-х2(квадрат), у=0 б) у(х-1)2(квадрат),у=х+1, у=0).

игроман02 игроман02    2   28.02.2019 08:40    1

Ответы
sagoankristina1 sagoankristina1  23.05.2020 16:48

а)  S = интеграл от -3 до 3 от(9 - х квад)dx = 9х /(от -3 до 3)  -  (х в кубе)/3 / (от -3 до 3) = (27+27) - (9+9) = 36.

 

б)  Сначала аналитически найдем точки пересечения графиков:

(х-1) квад = х+1. Или х квад - 3х = 0. х1 = 0;  х2 = 3. Тогда искомая площадь:

 S = S1 - S2. Здесь S1 - площадь под прямой у=х+1 на участке от 0 до 3, а S2- площадь под параболой (х-1) квад  на том же участке.

S = интеграл от 0 до 3 от [(х+1) - (х-1)квад]dx  = интеграл от 0 до 3 от (3х - хквад)dx = [3(хквад)/2 - хкуб/3]  /взято от 0 до 3 = 27/2  -   27/3  = 9/2 = 4,5

 ответ: 4,5

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия