Втреугольнике авс высота сн, равная 5, и медиана вм равная 4, пересекаются в точке к. расстояние от точки к до стороны ав равно 1. найдите сторону вс

Fogles12 Fogles12    1   28.06.2019 00:20    0

Ответы
королькова1 королькова1  22.07.2020 11:47
По условию KH=1, KC=4. Тогда, если S(BKH)=x, то S(KBC)=4x.
Если S(MKC)=y, то S(AKC)=2y=4S(AHK), Т.е. S(AHK)=y/2. Т.к. BM - медиана, то должно быть S(ABM)=S(CBM), т.е. x+y+y/2=4x+y, откуда y=6x. Это значит, что BK/BM=S(KBC)/S(CBM)=4x/(4x+6x)=2/5. Отсюда BK=2BM/5=8/5.
Тогда по т. Пифагора для треугольника BKH, получим BH^2={BK^2-KH^2}=64/25-1=39/25. И из треугольника BHC получим
BC=\sqrt{BH^2+CH^2}=\sqrt{39/25+5^2}=2\sqrt{166}/5.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия