ΔОМР подобен ΔКМТ по двум углам (∠МОР = ∠МКТ как накрест лежащие при пересечении параллельных прямых ОР и ТК секущей ОК, углы при вершине М равны как вертикальные). S₁ : S₂ = (OM : MK)² 72 : 50 = (OM : MK)² 36 : 25 = (OM : MK)² OM : MK = 6 : 5
На рисунке внизу доказывается, что если треугольники имеют общую высоту, то их площади относятся, как стороны, к которым проведена высота. ΔОМТ и ΔТМК имеют общую высоту, значит S₃ : S₂ = OM : MK = 6 : 5 S₃ = 6 · S₂ / 5 = 6 · 50 / 5 = 60
В любой трапеции площади треугольников, образованных боковыми сторонами и диагоналями равны (зеленые треугольники): S₄ = S₃ = 60
S₁ : S₂ = (OM : MK)²
72 : 50 = (OM : MK)²
36 : 25 = (OM : MK)²
OM : MK = 6 : 5
На рисунке внизу доказывается, что если треугольники имеют общую высоту, то их площади относятся, как стороны, к которым проведена высота.
ΔОМТ и ΔТМК имеют общую высоту, значит
S₃ : S₂ = OM : MK = 6 : 5
S₃ = 6 · S₂ / 5 = 6 · 50 / 5 = 60
В любой трапеции площади треугольников, образованных боковыми сторонами и диагоналями равны (зеленые треугольники):
S₄ = S₃ = 60
Sopkt = S₁ + S₂ + S₃ + S₄ = 72 + 50 + 60 + 60 = 242