Втрапеции abcd угол a = 90° высота ce делит основание ad на два равных отрезка, точка o - середина отрезка ac. а) докажите, что bo/bc = cd/ad б) найдите площадь треугольника acd. если площадь невыпуклого пятиугольника aobcd равна s.
А) О - середина АС ⇒ ОС/АС = 1/2 ВС = АЕ (АВСЕ - прямоугольник) АЕ = ЕД (по условию)⇒ ВС/АД = 1/2
ΔАСД - равнобедренный (СЕ - высота и медиана)⇒ АС = СД ВО = АС/2 так как ВО половина диагонали ВЕ прямоугольника АВСЕ ⇒ ⇒ВО/СД = 1/2 ⇒ ΔВОС подобен ΔАСД, а значит и BO/BC = CD/AD
б) ΔВОС подобен ΔАСД (доказано в пункте а) коэффициент подобия этих треугольников к = ВО/СД = 1/2 отношение площадей равно квадрату коэффициента подобия Sboc/Sacd = k² = 1/4 Saobcd = Sboc + Sacd = S из отношения Sboc/Sacd =1/4 ясно, что площадь ΔАСД составляет 4/5 площади АОВСД, значит Sacd = 4S/5
О - середина АС ⇒ ОС/АС = 1/2
ВС = АЕ (АВСЕ - прямоугольник) АЕ = ЕД (по условию)⇒ ВС/АД = 1/2
ΔАСД - равнобедренный (СЕ - высота и медиана)⇒ АС = СД
ВО = АС/2 так как ВО половина диагонали ВЕ прямоугольника АВСЕ ⇒
⇒ВО/СД = 1/2 ⇒ ΔВОС подобен ΔАСД,
а значит и BO/BC = CD/AD
б) ΔВОС подобен ΔАСД (доказано в пункте а)
коэффициент подобия этих треугольников к = ВО/СД = 1/2
отношение площадей равно квадрату коэффициента подобия
Sboc/Sacd = k² = 1/4
Saobcd = Sboc + Sacd = S
из отношения Sboc/Sacd =1/4 ясно, что площадь ΔАСД составляет 4/5 площади АОВСД, значит Sacd = 4S/5