Вравнобедренном треугольнике радиусы описанной и вписанной окружности соответственно равны 24 и 50см. вычислите периметр треугольника

Tomi200 Tomi200    3   19.07.2019 18:26    1

Ответы
Solnyshko8080 Solnyshko8080  22.09.2020 15:33

ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)

1) Р = 256 (см)

2) Р = 56V21 (см)

Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b

P = 2a+2b = 2(a+b)

а=b*cos(B); по т.синусов: b=2R*sin(B)

S = 2a*h/2 = ah; h = b*sin(B)

S = P*r/2 = (a+b)*r

(a+b)*r = ab*sin(B)

b(1+cos(B))*r = b*b*sin(B)*cos(B)

(1+cos(B))*r = 2R*sin^2(B)*cos(B)

r/(2R) = (1-cos(B))*cos(B)

обозначим х=cos(B)

x^2 - x + (6/25) = 0

(5x)^2 - 5*(5x) + 6 = 0

по т.Виета корни (3) и (2)

5х=3 ---> х = 0.6

---> sin(B) = V(1-0.36) = 0.8 или

5х=2 ---> х = 0.4

---> sin(B) = V(1-0.16) = 0.2V21

b = 2*50*0.8 = 80 или

b = 2*50*0.2V21 = 20V21

a = 80*0.6 = 48 или

а = 20V21*0.4 = 8V21

P = 2*(80+48) = 128*2 = 256 или

Р = 2*(20+8)*V21 = 56V21

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия