Естественно, что равные отрезки FM и FK отложены на сторонах FD и FE, которые равны по условию (других вариантов просто нет). Значит отрезок КМ параллелен отрезку DE. Следовательно, треугольник FMK подобен треугольнику FED, то есть является равнобедренным. Углы при основании равнобедренного треугольника равны: <FKM=<FMK. Значит равны и смежные с этими углами углы: <DKM=<ЕMК. Треугольники DKM и ЕМК равны по двум сторонам и углу между ними (ЕМ=KD, так как DF=EF и FM=FK, a MK - общая). В равных треугольниках против равных сторон лежат равные углы, то есть <DMK=<EKM. Тогда и <DKE=<DME, как разность равных углов: <DKE=<DKM-<EKM и <DME=<EMK-<DMK. Что и требовалось доказать.
Треугольники DKM и ЕМК равны по двум сторонам и углу между ними (ЕМ=KD, так как DF=EF и FM=FK, a MK - общая).
В равных треугольниках против равных сторон лежат равные углы, то есть <DMK=<EKM. Тогда и <DKE=<DME, как разность равных углов:
<DKE=<DKM-<EKM и <DME=<EMK-<DMK.
Что и требовалось доказать.