Вравнобедренном треугольнике abc проведена высота bd к основанию ac. длина высоты — 12,5 см, длина боковой стороны — 25 см. определи углы этого треугольника.
Высота делит равнобедренный треугольник на два равных прямоугольных треугольника. При этом высота является катетом, второй катет является половиной основания, а боковая сторона это гипотенуза. Ну возьмём один из этих треугольников. Если внимательно посмотреть на его стороны, то можно увидеть, что катет равен половине гипотенузы. А это уже известное свойство! Согласно ему катет, который лежит против угла в 30 градусов, равен половине гипотенузы. То есть, если катет равен половине этой гипотенузы, значит угол против него равен 30 градусам. Ну и вот, раз треугольник равнобедренный, то углы при его основании равны. Значит, углы треугольника- 30 и 30 и угол при вершине. Чтобы его найти, вычтем сумму известных углов из 180: 180-(30+30)=120. Значит, углы треуг. 30,30 и 120.