Вравнобедренном треугольнике abc ab=ac, ab=6, cosb=корень из 3/2..найдите его площадь)) если кто -нибуть ,то можно с точными !

16Евгения16 16Евгения16    2   19.05.2019 19:30    1

Ответы
qwetdfgdsa qwetdfgdsa  13.06.2020 00:26

Углы B и C в рассматриваемом равнобедренном треугольнике равны (как углы между основанием и равными рёбрами). Их градусную меру можно определить через известное значение косинуса

arccos \frac{\sqrt{3}}{2} = 30°.

 

Площадь треугольника найдём как сумму двух одинаковых площадей прямоугольных треугольников. Для этого проведём из вершины A высоту на основание BC. Эта высота AF для равнобедренного треугольника будет также биссектрисой угла A и медианой, делящей основание BC пополам.

 

Сумма углов треугольника ABC равна 180°. Значит, угол A будет равен 180° - 30° - 30° = 120°. Половина угла равна 60°.

 

Итак, имеем два равных треугольника ABF и ACF с углами B=C=30° и гипотенузами AB=AC=6. Высоту AF найдём как произведение гипотенузы AB на косинус угла BAF = 0,5 углов A = 60°: AF = 6 · 0,5 = 3. Половину основания найдём из теоремы Пифагора:

AF^2 + BF^2 = AB^2 \; \Rightarrow \; BF = \sqrt{AB^2 - AF^2} = \sqrt{6^2 - 3^2} = \sqrt{36 - 9} = \sqrt{27} = 3\sqrt{3}

Проверим, зная косинус угла B:

BF = AB \cdot cos B = 6 \cdot \frac{\sqrt{3}}{2} = 3\sqrt{3}

 

Площадь прямоугольного треугольника равна половине произведения его катетов. Полная площадь равнобедренного треугольника равна сумме площадей равных треугольников ABF и ACF. Получим:

S = 2 \cdot \frac{1}{2} \cdot BF \cdot AF = BF \cdot AF = 3\sqrt{3} \cdot 3 = 9\sqrt{3}

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия