Впрямоугольный треугольник вписана окружность. точка касания вписанной окружности с одним из катетов делит этот катет на отрезки 8 см и 7 см. найдите диаметр окружности, вписанной около данного прямоугольного треугольника. нужно решение

MariaGraf MariaGraf    3   21.05.2019 19:40    1

Ответы
slkncv slkncv  01.10.2020 04:55

Ясно, что один из отрезков - тот, который имеет своим концом вершину прямого угла - равен радиусу вписанной окружности. Это сразу понятно, если провести радиусы в точки касания - у вершины прямого угла получится квадрат, образованный двумя радиусами и двумя отрезками катетов. 

Поскольку два угла прямоугольнного треугольника ОСТРЫЕ, то есть из половинки меньше 45 градусов, то отношение радиуса вписанной окружности к отрезку стороны от вершины острого угла до точки касания МЕНЬШЕ, чем 1. Поэтому радиус вписанной окружности равен 7, а один из катетов равен 15. Точки касания делят гипотенузу на отрезки 8 и x, а второй катет - на отрезки 7 и х.

(8 + x)^2 = (7 + x)^2 + 15^2;

x = (15^2 + 7^2 - 8^2)/2 = 105;

поэтому стороны треугольника равны 15, 112, 113.

Само собой, радиус описанной окружности равен половине гипотенузы 113/2.

 

(интересная Пифагорова тройка 15, 112, 113, - она получается, если взять Пифагорову тройку 5,12,13, и приписать 1 слева :) забавно было бы найти все такие тройки, у которых можно отбросить - или, наоборот, приписать - сколько-то знаков слева, и получится новая тройка. Но эту задачку вряд ли решит школьник, даже если сдаст десять тысяч ЕГЭ. Её и профессор не всякий решит...)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия