Впрямоугольной трапеции abcd (угол bad=90) с основаниями ad=24 и bc=16 диагонали пересекаются в точке m, ab=10. а) докажите, что треугольники bmc и dam подобны. б) найдите периметр треугольника adm

tsey12kirill tsey12kirill    1   12.07.2019 06:20    25

Ответы
лунтик73 лунтик73  18.09.2020 08:56
∠CBD=∠BDA- внутренние накрест лежащие при параллельных BC и AD и секущей BD
∠BCA=∠CAD- внутренние накрест лежащие при параллельных BC и AD и секущей AC

Треугольники BMC и DAM подобны по двум углам

По теореме Пифагора
АС²=10²+16²=100+256=356
АС=2√89

По теореме Пифагора
BD²=AB²+AD²=10²+24²=100+576=676
BD=26

Из подобия треугольников BMC и DAM  следует пропорциональность сторон
BM: MD=BC:AD
BM:(26-BM)=16:24  
16·(26-BM)=24BM
40BM=416
BM=10,4
MD=26-10,4=15,6

CM: MA=BC:AD
CM:(2√89 - CM)=16:24  
16·(2√89 - CM)=24·CM
40·CM=32·√89
CM=0,4·√89
MA=√89  -  0,4·√89  = 0,6·√89

Р(Δ MAD)=MA+AD+DM=0,6√89+24+15,6=39,6+0,6·√89=0,6·(66+√89)=

= \frac{3(66+ \sqrt{89})}{5}
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия