Построим произвольный прямоугольный треугольник АВС. Проведем из прямого угла АВС высоту ВД и медиану ВЕ.
Наибольшим углом данного треугольника будет ∠АВС=90 градусам.
Найдем наибольший ОСТРЫЙ угол данного треугольника:
По условию ∠ДВЕ=3 °.
Рассмотрим треугольник ВДЕ:
∠ВЕД=180-ВДЕ-ДВЕ=180-90-3=87 °.
∠ВЕА=180-ВЕД=180-87=93 °(как смежные углы).
Так как медиана, проведенная из вершины прямого угла, равна половине гипотенузы мы получаем два равнобедренных треугольника:
ВАЕ и ВСЕ
Рассмотрим треугольник ВАЕ:
так как АЕ=ВЕ то углы ВАЕ=АВЕ (углы при основании равнобедренного треугольника)
Значит ∠ВАЕ=(180-ВЕА)/2=(180-93)/2=43,5°
Рассмотрим треугольник ВСЕ:
так как СЕ=ВЕ то углы ВСЕ=СВЕ (углы при основании равнобедренного треугольника)
Значит ∠ВСЕ=(180-ВЕС)/2=(180-87)/2= 46,5°
43,5<46,5
А значит, наибольшим острым углом треугольника АВС является угол ВСА=46,5 градуса
Построим произвольный прямоугольный треугольник АВС. Проведем из прямого угла АВС высоту ВД и медиану ВЕ.
Наибольшим углом данного треугольника будет ∠АВС=90 градусам.
Найдем наибольший ОСТРЫЙ угол данного треугольника:
По условию ∠ДВЕ=3 °.
Рассмотрим треугольник ВДЕ:
∠ВЕД=180-ВДЕ-ДВЕ=180-90-3=87 °.
∠ВЕА=180-ВЕД=180-87=93 °(как смежные углы).
Так как медиана, проведенная из вершины прямого угла, равна половине гипотенузы мы получаем два равнобедренных треугольника:
ВАЕ и ВСЕ
Рассмотрим треугольник ВАЕ:
так как АЕ=ВЕ то углы ВАЕ=АВЕ (углы при основании равнобедренного треугольника)
Значит ∠ВАЕ=(180-ВЕА)/2=(180-93)/2=43,5°
Рассмотрим треугольник ВСЕ:
так как СЕ=ВЕ то углы ВСЕ=СВЕ (углы при основании равнобедренного треугольника)
Значит ∠ВСЕ=(180-ВЕС)/2=(180-87)/2= 46,5°
43,5<46,5
А значит, наибольшим острым углом треугольника АВС является угол ВСА=46,5 градуса