Впрямоугольном треугольнике ABC угол C = 90°, катеты a и b соответственно равны корень11 cm и 5 cm. Найдите гипотенузу c, острые углы a и B этого треугольника.
Для начала найдем гипотенузу этого треугольника. По теореме Пифагора, квадрат гипотенузы в прямоугольном треугольнике равен сумме квадратов его катетов.
см.
Теперь найдем острые углы этого треугольника. Сделаем это через их синусы. Синус острого угла в прямоугольном треугольнике равен отношению противолежащего катета к гипотенузе. Пусть угол B лежит напротив катета b. Тогда .
Таким образом, ≈ 56,44°.
Зная это, мы можем найти оставшийся угол А. .
В треугольнике напротив большей стороны всегда лежит больший угол. Значит, наше утверждение правильно. Катет b больше катета a. Поэтому угол B - тот, который лежит напротив катета b, угол A - тот, что лежит напротив катета a.
Для начала найдем гипотенузу этого треугольника. По теореме Пифагора, квадрат гипотенузы в прямоугольном треугольнике равен сумме квадратов его катетов.
см.
Теперь найдем острые углы этого треугольника. Сделаем это через их синусы. Синус острого угла в прямоугольном треугольнике равен отношению противолежащего катета к гипотенузе. Пусть угол B лежит напротив катета b. Тогда .
Таким образом, ≈ 56,44°.
Зная это, мы можем найти оставшийся угол А. .
В треугольнике напротив большей стороны всегда лежит больший угол. Значит, наше утверждение правильно. Катет b больше катета a. Поэтому угол B - тот, который лежит напротив катета b, угол A - тот, что лежит напротив катета a.