Вправильной четырехугольной пирамиде sabcd сторона основания равна √26, а боковое ребро 13. найдите угол между плоскостями sab и sbc (ответ: arccos 1/25)

ЛераЛи123 ЛераЛи123    3   27.09.2019 05:10    16

Ответы
Svetka707 Svetka707  08.10.2020 21:59
Пусть В - начало координат
Ось X - BA
Ось Y - ВС
Ось Z - перпендикулярно АВС в сторону S

Диагональ основания √26*√2=√52

высота пирамиды
h=√(13^2-(√52/2)^2)=√156

Координаты точек
A (√26;0;0)
C (0;√26;0)
S (√26/2;√26/2;√156)

Уравнение плоскости SAB ( проходит через начало координат)
ax+by+cz=0

Подставляем координаты точек

√26a=0 a=0
√26a/2+√26b/2+√156c=0

Пусть b=2√6 тогда с = -1

Уравнение SAB
2y√6-z=0

Уравнение плоскости SBC ( проходит через начало координат)
ax+by+cz=0

Подставляем координаты точек

√26b=0 b=0
√26a/2+√26b/2+√156c=0

Пусть a=2√6 тогда с = -1

Уравнение SBC
2x√6-z=0

Косинус искомого угла равен
(0*2√6 + 2√6*0 + (-1)*(-1))/√((2√6)^2+1)/√((2√6)^2+1) = 1/25

Угол arccos ( 1/25)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия