Вправильной треугольной пирамиде боковое ребро равно 2 корня из 13, апофема равна 5. найдите котангенс угла, который образует боковое ребро с основанием пирамиды.
В правильной пирамиде в основании лежит правильный треугольник, высота проецируется в центр основания, боковые ребра равны. SA = SB = SC = 2√13 SH = 5 - апофема (высота боковой грани). SO - высота. ОС - проекция наклонной SC на плоскость основания, тогда ∠SCO - угол, который образует боковое ребро с основанием пирамиды. Обозначим его α. Найти надо ctgα.
ΔSHB: по теореме Пифагора НВ = √(SB² - SH²) = √((2√13)² - 5²) = √(52 - 25) = √27 = 3√3 Тогда сторона основания a = AB = BC = AC = 6√3 ОС - радиус окружности, описанной около основания. ОС = а√3/3 = 6√3·√3/3 = 6 ΔSOC: по теореме Пифагора SO = √(SC² - OC²) = √(52 - 36) =√16 = 4 ctgα = OC/SO = 6/4= 3/2
SA = SB = SC = 2√13
SH = 5 - апофема (высота боковой грани).
SO - высота.
ОС - проекция наклонной SC на плоскость основания, тогда ∠SCO - угол, который образует боковое ребро с основанием пирамиды. Обозначим его α.
Найти надо ctgα.
ΔSHB: по теореме Пифагора
НВ = √(SB² - SH²) = √((2√13)² - 5²) = √(52 - 25) = √27 = 3√3
Тогда сторона основания a = AB = BC = AC = 6√3
ОС - радиус окружности, описанной около основания.
ОС = а√3/3 = 6√3·√3/3 = 6
ΔSOC: по теореме Пифагора
SO = √(SC² - OC²) = √(52 - 36) =√16 = 4
ctgα = OC/SO = 6/4= 3/2