Впараллелограмме авсd биссектрисы углов в и с пересекаются в точке f, лежащей на стороне ad. найдите периметр параллелограмма авсd, если bf = 6, cf = 8.
Внутри паралеллограма получится треугольник BCF, он прямоугольный, т.к. BF^2+CF^2=BC^2 | 64+36=100 | BC=10 ABCD - п\м | BC=AD=10
Внизу останутся отрезки AE и ED, обозначим их за 'x' и 'y', а т.к. BF и CF - биссектрисы, то углы ABE=AEB (значит ABE - р/б); DCE=DEC (значит CDE - р/б)
ABCD - п\м | BC=AD=10
Внизу останутся отрезки AE и ED, обозначим их за 'x' и 'y', а т.к. BF и CF - биссектрисы, то углы ABE=AEB (значит ABE - р/б); DCE=DEC (значит CDE - р/б)
С переозначенными сторонами получим формулу периметра: y+y+x+x+10=2*(y+x)+10
y+x=AD=10, значит периметри равен 2*10+10=30