Восновании пирамиды прямоугольный треугольник с гипотенузой a, каждое боковое ребро образует с плоскостью основания угол \beta. найти основание пирамиды.
Совершенно не важна величина угла боковой грани к основанию, важно то, что для все трёх боковых сторон этот угол одинаков. От точек касания вписанной окружности сторон треугольника к вершине пирамиды построим апофемы. Поскольку для каждой из боковых граней угол между апофемой и плоскостью основания один и тот же, поскольку у всех трёх апофем общая вершина и, следовательно, одинаковая проекция апофемы на плоскость основания - то расстояние от сторон треугольника до проекции вершины пирамиды на плоскость основания одно и то же и И тогда вершина пирамиды лежит над центром вписанной в основание окружности. И тогда треугольник в основании - равнобедренный. и тогда его стороны равны a√2, a√2, a
От точек касания вписанной окружности сторон треугольника к вершине пирамиды построим апофемы. Поскольку для каждой из боковых граней угол между апофемой и плоскостью основания один и тот же, поскольку у всех трёх апофем общая вершина и, следовательно, одинаковая проекция апофемы на плоскость основания - то расстояние от сторон треугольника до проекции вершины пирамиды на плоскость основания одно и то же и
И тогда вершина пирамиды лежит над центром вписанной в основание окружности.
И тогда треугольник в основании - равнобедренный.
и тогда его стороны равны a√2, a√2, a