Восновании пирамиды лежит ромб со стороной 8 и острым углом 30. высота пирамиды проходит через точку пересечения её диагоналей, а боковые грани наклонены к основанию под углом 60. найти площадь боковой поверхности пирамиды. в ответе должно получиться 64
∠SHO = 60° - линейный угол двугранного угла наклона боковой грани к основанию.
Диагонали ромба точкой пересечения делятся пополам.
АО = ОС, BO = OD.
Тогда SA = SC и SB = SD (так как наклонные, проведенные из одной точки, равны, если равны их проекции).
ΔSAB = ΔSAD = ΔSCB = ΔSCD по трем сторонам.
Sбок = 4·Sscd
Sabcd = AB²·sinA = p · r, где р - полупериметр, r - радиус вписанной окружности.
r = OH.
64·0,5 = (4·8)/2 · ОН
32 = 16·ОН
ОН = 2
ΔSOH: SH = OH/cos60°
SH = 2 · 2 = 4
Sscd = CD·SH/2 = 8·4/2 = 16
Sбок = 4 · Sscd = 4 · 16 = 64 кв. ед.