Высота конуса перпендикулярна диаметру основания, который является основанием треугольника -осевого сечения. Высота делит осевое сечение на два равных прямоугольных треугольника, в которых один из катетов равен 4V3. Угол при вершине также делится пополам: 120:2= 60 град. Тогда два других угла осевого сечения равны по 30 град. В прямоугольном треуг. против угла в 30 град лежит катет, равный половине гипотенузы, которая является стороной осевого сечения и равна 8V3. Теперь из любого прямоугольного треугольника найдем радиус основания: R^2:=(8V3)^2- (4v3)^2=64*3-16*3=12, R=2V3. Sосн= ПR^2=12П см кв.