По условию, FBDE - ромб ⇒ FB = BD = DE = FE и ∠DBE = ∠BFE.
Пусть , BE - высота треугольника ABC и биссектриса острых углов ромба FBDE , то ΔABC - равнобедренный ⇒ ∠BAC = ∠BCA = α.
Отрезок АС виден под прямыми углами, следовательно, точки A, F, D, C лежат на окружности ⇒ DE - медиана и радиус окружности, следовательно, DE = EC ⇒ ΔDEC - равнобедренный ⇒
∠EDC = ∠DCE = α. Тогда ∠DBE = 180° - α. Известно, что сумма углов четырехугольника равна 360°.
2∠FBD + 2∠DBE = 360°
2∠FBD + 360° - 2α = 360°
∠FBD = α
Таким образом, ∠A = ∠B = ∠C ⇒ ΔABC - равносторонний.
По условию, FBDE - ромб ⇒ FB = BD = DE = FE и ∠DBE = ∠BFE.
Пусть , BE - высота треугольника ABC и биссектриса острых углов ромба FBDE , то ΔABC - равнобедренный ⇒ ∠BAC = ∠BCA = α.
Отрезок АС виден под прямыми углами, следовательно, точки A, F, D, C лежат на окружности ⇒ DE - медиана и радиус окружности, следовательно, DE = EC ⇒ ΔDEC - равнобедренный ⇒
∠EDC = ∠DCE = α. Тогда ∠DBE = 180° - α. Известно, что сумма углов четырехугольника равна 360°.
2∠FBD + 2∠DBE = 360°
2∠FBD + 360° - 2α = 360°
∠FBD = α
Таким образом, ∠A = ∠B = ∠C ⇒ ΔABC - равносторонний.