В треугольнике ABC CM- биссектриса уголACB, CM = MB, угол САВ в два раза меньше угла АСВ
Найдите градусную меру угла CMB

Geimer200 Geimer200    3   17.09.2021 15:03    0

Ответы
hjhffff hjhffff  27.11.2021 01:07

<САВ=Х

<АСВ=2Х

СМ биссектриса,значит

<АСМ=<МСВ=2Х:2=Х градусов

Треугольник ВМС,если две его боковых стороны равны между собой

СМ=МВ по условию задачи,

то треугольник равнобедренный и углы при его основании равны между собой

<МСВ=<МВС=Х градусов

Теперь рассмотрим треугольник АВС и узнаём,чему равен Х

<А+<В+<С=Х+Х+2Х=4Х

4Х=180

Х=180:4=45 градусов

<А=<В=45 градусов

<С=90 градусов

Треугольник ВМС

Углы при основании по 45 градусов,

<СМВ=180-45•2=90 градусов

Объяснение:

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия