В школьной мастерской ищготовлены из проволки 4 стержня длинной 2см, 2см, 3см, 8см. Выясните из каких трех стержней можно составить треуголник. Объясните ваши выводы
Добрый день, ученик! Давайте разберемся вместе, из каких трех стержней можно составить треугольник.
Для того чтобы составить треугольник, должно выполняться одно важное правило: сумма длин любых двух сторон треугольника должна быть больше длины третьей стороны.
Итак, у нас есть стержни длиной 2 см, 2 см, 3 см и 8 см. Давайте попробуем комбинировать их и проверять выполнение правила.
Возьмем первые три стержня: 2 см, 2 см и 3 см. Проверим, выполняется ли правило суммы сторон. Сложим два самых коротких стержня - 2 см + 2 см = 4 см. Оказывается, что сумма двух самых коротких сторон равна 4 см, что больше, чем длина третьей стороны 3 см. Правило выполняется. Мы можем из этих трех стержней составить треугольник.
Теперь попробуем с другими комбинациями стержней. Возьмем стержни длиной 2 см, 2 см и 8 см. Снова сложим два самых коротких стержня - 2 см + 2 см = 4 см. Но на этот раз получаем, что сумма двух самых коротких сторон равна 4 см, что равно длине третьей стороны 8 см. Так как сумма двух сторон равна длине третьей стороны, то правило не выполняется. Мы не можем из этих трех стержней составить треугольник.
Переходим к следующей комбинации стержней - 2 см, 3 см и 8 см. Сложим два самых коротких стержня - 2 см + 3 см = 5 см. При этом получаем, что сумма двух самых коротких сторон равна 5 см, что больше, чем длина третьей стороны 8 см. И это значит, что правило выполняется и мы можем из этих трех стержней составить треугольник.
Таким образом, из трех стержней длиной 2 см, 3 см и 8 см можно составить треугольник, потому что сумма длин любых двух сторон будет больше длины третьей стороны.
Надеюсь, мой ответ был понятен и помог разобраться в решении задачи. Если у тебя возникнут еще вопросы, обращайся!
Для того чтобы составить треугольник, должно выполняться одно важное правило: сумма длин любых двух сторон треугольника должна быть больше длины третьей стороны.
Итак, у нас есть стержни длиной 2 см, 2 см, 3 см и 8 см. Давайте попробуем комбинировать их и проверять выполнение правила.
Возьмем первые три стержня: 2 см, 2 см и 3 см. Проверим, выполняется ли правило суммы сторон. Сложим два самых коротких стержня - 2 см + 2 см = 4 см. Оказывается, что сумма двух самых коротких сторон равна 4 см, что больше, чем длина третьей стороны 3 см. Правило выполняется. Мы можем из этих трех стержней составить треугольник.
Теперь попробуем с другими комбинациями стержней. Возьмем стержни длиной 2 см, 2 см и 8 см. Снова сложим два самых коротких стержня - 2 см + 2 см = 4 см. Но на этот раз получаем, что сумма двух самых коротких сторон равна 4 см, что равно длине третьей стороны 8 см. Так как сумма двух сторон равна длине третьей стороны, то правило не выполняется. Мы не можем из этих трех стержней составить треугольник.
Переходим к следующей комбинации стержней - 2 см, 3 см и 8 см. Сложим два самых коротких стержня - 2 см + 3 см = 5 см. При этом получаем, что сумма двух самых коротких сторон равна 5 см, что больше, чем длина третьей стороны 8 см. И это значит, что правило выполняется и мы можем из этих трех стержней составить треугольник.
Таким образом, из трех стержней длиной 2 см, 3 см и 8 см можно составить треугольник, потому что сумма длин любых двух сторон будет больше длины третьей стороны.
Надеюсь, мой ответ был понятен и помог разобраться в решении задачи. Если у тебя возникнут еще вопросы, обращайся!