В равнобедренной трапеции диагональ перпендикулярна боковой стороне. Найдите площадь трапеции, если большее основание равно 12 корней из 3, а один из углов трапеции равен 60 градусов. Подробно свойства, теоремы, формулы
Обозначим трапецию АВСD, AB=CD, АD=12√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=6√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠АВН=180°-90°-60°=30°. Катет АН=АВ:2=3√3. ⇒ DH=AD-AH=12√3-3√3=9√3. Высота ВН=АВ•sin60°=6√3•(√3/2)=9. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=9•9√3=81√3 (ед. площади)
Обозначим трапецию АВСD, AB=CD, АD=12√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=6√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠АВН=180°-90°-60°=30°. Катет АН=АВ:2=3√3. ⇒ DH=AD-AH=12√3-3√3=9√3. Высота ВН=АВ•sin60°=6√3•(√3/2)=9. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=9•9√3=81√3 (ед. площади)