В равнобедренном треугольнике ABC, АВ=ВС, проведены биссектрисы CL и АМ, пересекающиеся в точке О. На продолжении стороны СВ за точку В выбрана точка F. Известно, что ∠АОС=128°. Найдите ∠FBA. Заранее

Юлдуз1122 Юлдуз1122    1   29.05.2020 14:10    1

Ответы
denchenchik02 denchenchik02  13.08.2020 11:24
∠CBF — это развёрнутый угол, который по определению равен 180°
∠CBF = ∠CBA + ∠ABF
Отсюда
∠CBA = ∠CBF — ∠ABF = 180° — 76° = 104°
Рассмотрим треугольник ABC
Сумма углов треугольника равна 180°:
∠CBA + ∠BAC + ∠ACB = 180°
104° + ∠BAC + ∠ACB = 180°
По условию задачи нам дан равнобедренный треугольник ACB. Согласно свойству равнобедренного треугольника — углы при основании (CA) равны. Т.е. ∠BAC и ∠ACB равны.
Следовательно
∠BAC + ∠ACB = 180° — 104° = 76°
∠BAC = ∠ACB = 76° : 2 = 38°
Рассмотрим треугольник ACO
По условию задачи в треугольнике ABC проведены биссектрисы CL и AM.
По определению, биссектриса делит угол пополам, следовательно
∠CAO = ∠CAB : 2 = 38° : 2 = 19°
∠ACO = ∠ACB : 2 = 38° : 2 = 19°
Сумма углов треугольника равна 180°:
∠CAO + ∠ACO + ∠AOC = 180°
19° + 19° + ∠AOC = 180°
∠AOC = 180° — 19° — 19° = 142°
ответ:
∠AOC = 142°

Как то так не гарантирую что это правильно
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия