Для нахождения площади прямоугольной трапеции можно воспользоваться формулой: S = (a + b) * h / 2, где a и b - длины оснований, а h - высота трапеции.
У нас даны основания а = 7 и b = 11, а также известны боковые стороны, которые можно использовать для нахождения высоты.
Для нахождения высоты можно воспользоваться теоремой Пифагора. Рассмотрим прямоугольный треугольник с катетами, равными боковым сторонам 5 и 9. По теореме Пифагора найдем гипотенузу:
У нас даны основания а = 7 и b = 11, а также известны боковые стороны, которые можно использовать для нахождения высоты.
Для нахождения высоты можно воспользоваться теоремой Пифагора. Рассмотрим прямоугольный треугольник с катетами, равными боковым сторонам 5 и 9. По теореме Пифагора найдем гипотенузу:
гипотенуза^2 = катет1^2 + катет2^2
гипотенуза^2 = 5^2 + 9^2
гипотенуза^2 = 25 + 81
гипотенуза^2 = 106
гипотенуза = √106 (корень из 106)
Таким образом, высота трапеции равна √106.
Подставим все значения в формулу для нахождения площади:
S = (7 + 11) * √106 / 2
S = 18 * √106 / 2
S = 9 * √106
Ответ: площадь трапеции равна 9 * √106.