В окружность с центром О, вписан ∆KLM так, что < KOM=130°, U KL : U LM= 2: 3.Найдите величину дуги KL

schvarzengold100 schvarzengold100    3   20.05.2021 08:10    6

Ответы
lilcutthroat lilcutthroat  19.06.2021 08:11

21.6 см

Объяснение:

Радиус = половине диаметра:

R= ОМ= 1/2 * КМ = 14,4*1/2=7,2

А - середина хорды ВD ⇒ BA=AD

Угол между диаметром и радиусом это угол BOA.

Рассмотрим ΔBOA и ΔDOA : ОB=ОD - радиусы окружности, ОA - общая, BA=DA - по условию ⇒ ΔBOA = ΔDOA по трём сторонам (3 признак равенства треугольников)

Из равенства Δ следует  равенство углов: ∠BOA=∠DOA = 30° ⇒∠СОД=60°

∠B = ∠D = (180°-60°)/2= 60°

т.к. ∠BOD = ∠D = ∠B ⇒ ΔBОD - равносторонний ОB=ОD=BD=R = 7,2

РΔ=3*R  =3*7,2=21.6 см


В окружность с центром О, вписан ∆KLM так, что < KOM=130°, U KL : U LM= 2: 3.Найдите величину дуг
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия