Угол между векторами а и b равен 30 градусов, угол между векторами b и с также равен 30 градусов. найдите длину вектора а+b+с, если длина каждого из векторов а и с равна корень из 3, а длина вектора b равна 2.
Геометрически сумма двух векторов,имеющих общее начало, равна длине диагонали параллелограмма,который они образуют ( правило паралллелограмма).А длина этой диагонали равна площади этого же параллелограмма, то есть |a+b|=|a|*|b|*sin30° = 0,5*|a|*|b|.
Теперь сложим вектор а+в и вектор с аналогично.
Площадь построенного параллелограмма на векторах (а+в) и с равна
Геометрически сумма двух векторов,имеющих общее начало, равна длине диагонали параллелограмма,который они образуют ( правило паралллелограмма).А длина этой диагонали равна площади этого же параллелограмма, то есть |a+b|=|a|*|b|*sin30° = 0,5*|a|*|b|.
Теперь сложим вектор а+в и вектор с аналогично.
Площадь построенного параллелограмма на векторах (а+в) и с равна
|a+b|*|c|*sin 30=o,5*|a|*|b|*|c|*0,5=0,25*|a|*|b|*|c|.
Этому же числу будет равна длина вектора (а+в+с).
Чёрточки над векторами поставь сама.