Угол между боковой гранью и плоскостью основания правильной четырехугольной пирамиды 30 градусов, а сторона основания равна 6 см. найдите угол между боковым ребром и плоскостью основания пирамиды. найдите объем пирамиды.

MostepanovaJanna MostepanovaJanna    2   28.08.2019 18:10    2

Ответы
Asetkyzy Asetkyzy  06.10.2020 00:59

В основании правильной четыреухгольной пирамиды SABCD лежит квадрат ABCD,  боковые грани — равные треугольники с общей вершиной S. Высота пирамиды Н опускается в центр пересечения O диагоналей квадрата основания из вершины пирамиды S.
Угол между боковой гранью и плоскостью основания пирамиды является углом между высотой h(бок) боковой грани (перпендикуляром SM, опущенным из вершины S пирамиды к основанию AB равнобедренного треугольника боковой грани) и плоскостью основания. 
В прямоугольном треугольнике SOM, SM - гипотенуза, SO=H = катет, противолежащий углу 30 градусов, MO - катет, прилежащий углу 30 градусов. МО = половине стороны квадрата основания пирамиды.
МО = AB/2 = 6/2 = 3 см
Катет, противолежащий углу 30 градусов, равен половине гипотенузы⇒ SM = 2H
по теореме Пифагора:
H² + MO² = (2H)²
H² + 9 = 4H²
3H² = 9
H² = 3
H = √3 см

В прямоугольном треугольнике SOA, боковое ребро пирамиды SA - гипотенуза, SO=H=√3 - катет, противолежащий искомому углу, AO - катет, прилежащий искомому углу. AO= половине диагонали квадрата основания пирамиды.
AO = AB*√2 / 2 = 6 * √2 / 2 = 3√2 см

Тангенс искомого угла - отношение противолежащего катета к прилежащему.
√3 / 3√2 = 1 / √6 ≈ 0.4082, что приблизительно соответствует углу 22°12' (по таблице Брадиса)

Угол между боковым ребром и плоскостью основания пирамиды приблизительно равен 22 градуса 12 минут.

Объем правильной четырехугольной пирамиды равен:
V = 1/3 * H * a²
V = 1/3 * √3 * 6² = 12√3 см²

 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия