Угол между биссектрисой тупого угла параллелограмма и высатой ,проведёной из вершины этого угла,равен 40 градусов.найдите углы параллелограмма.

GGWPmen GGWPmen    3   25.05.2019 11:40    0

Ответы
maksim20081986 maksim20081986  21.06.2020 14:08
Параллелограмм АВСД, высота ВН на АД, биссектриса ВК угла В на СД
уголНВК=40, угол ВКС=уголАВК как внутренние разносторонние=уголКВС, треугольник КВС равнобедренный
уголАВН=х, уголАВК=х+40=уголКВС=уголВКС, уголС=180-уголКВС-уголВКС=180-(х+40) - (х+40)=100-2х =уголА, треугольник АВН прямоугольный, уголА+уголВАН=90
(100-2х)+х=90, х=10, уголА=100-2*10=80=уголС, уголВ=180-уголА=180-80=100=уголД
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия