Центр кола, яке вписане у трикутник, знаходиться у точці перетину бісектрис.
Отже, BN—бісектриса.
Якщо BN—висота і бісектриса, то з цього випливає, що трикутник ABC—рівнобедренний.
Объяснение:
Центр окружности описанной около треугольника-точка пересечения серединных перпендикуляров его сторон.
AD⊥BC, O∈AD⇒AD-серединный перпендикуляр отрезка BC
Тогда BD=CD, значит AD-медиана
AD-медиана, AD-высота⇒ΔАBC-равнобедренный
ч.т.д.
Центр кола, яке вписане у трикутник, знаходиться у точці перетину бісектрис.
Отже, BN—бісектриса.
Якщо BN—висота і бісектриса, то з цього випливає, що трикутник ABC—рівнобедренний.
Объяснение:
Центр окружности описанной около треугольника-точка пересечения серединных перпендикуляров его сторон.
AD⊥BC, O∈AD⇒AD-серединный перпендикуляр отрезка BC
Тогда BD=CD, значит AD-медиана
AD-медиана, AD-высота⇒ΔАBC-равнобедренный
ч.т.д.