Знайдемо ЕК та РТ.
ΔЕВК подібний до ΔАВС. (∠В - спільний, ∠ВЕК=∠ВРТ як односторонні при ЕК║АС та січній АВ; ∠ВКЕ=∠АСВ, як односторонні при ЕК║АС та січній ВС)
Коефіціент подібності k=1/3, тому що ВЕ=1/3 АВ
Тоді ЕК=1/3 АС=12:3=4 см.
ЕК - середня лінія ΔВРТ, тому РТ=2ЕК=8 см.
Відповідь: 4 см; 8 см.
Знайдемо ЕК та РТ.
ΔЕВК подібний до ΔАВС. (∠В - спільний, ∠ВЕК=∠ВРТ як односторонні при ЕК║АС та січній АВ; ∠ВКЕ=∠АСВ, як односторонні при ЕК║АС та січній ВС)
Коефіціент подібності k=1/3, тому що ВЕ=1/3 АВ
Тоді ЕК=1/3 АС=12:3=4 см.
ЕК - середня лінія ΔВРТ, тому РТ=2ЕК=8 см.
Відповідь: 4 см; 8 см.