Точки а,в,с,д размещены на кругу так,что ав=вс=са, вд- бисектриса угла авс. докажите, что вд- диаметр круга.

kola3344 kola3344    2   20.03.2019 19:50    0

Ответы
79184493272 79184493272  26.05.2020 09:39

Соединим точки А,В и С в треугольник.

Каждый угол этого треугольника опирается на равную дугу. Так как углы вписанные, то они равны  ½ ·360:3=60°.
Соединим последовательно точки С, D, А. Получившийся четырехугольник АВСD - вписанный. Сумма противоположных углов вписанного четырехугольника равна 180°
∠ СВА+ ∠СDА=180°.
∠СDА =180-60=120°
ВD - биссектриса ∠ В по условию задачи.
Поскольку Δ АВС - равносторонний, биссектриса в нем и высота, и медиана. Отсюда СА⊥ВD, СН=АН.
Δ ВСD=Δ ВАD по первому признаку равенства треугольников: 

в них равны стороны АВ и ВС, сторона ВD общая, равен и угол между этими сторонами.
∠СВD=60:2=30°
∠ СDВ=120:2=60°
∠ ВСD=180- (60+30)=90°
Δ СВD - прямоугольный.
ВD - его гипотенуза.

Гипотенуза вписанного прямоугольного треугольника является диаметром окружности, в которую этот треугольник вписан.
ВD- диаметр, что и требовалось доказать.


Точки а,в,с,д размещены на кругу так,что ав=вс=са, вд- бисектриса угла авс. докажите, что вд- диамет
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия