Точка касания окружности,вписанной в прямоугольный треугольник , и катета делит на отрезки длиной 3 и 5. найдите радиус окружности,описанной около этого треугольника.
По условию задачи радиус вписанной в данный треугольник обозначим его АВС, окружности равен 3 см ( от точки касания с до второго катета, которого касается окружность). Имеем: 1-й катет СА=3+5=8см 2-й катет СВ =3+х ( х = расстояние от точки касания до вершины В) Гипотенуза АВ =5+х. Чтобы понять, почему, вспомним свойство 2-х касательных из одной точки к окружности. Расстояние от этой точки до точек касания равно. Поэтому гипотенуза АВ равна расстоянию от вершины А до точки касания (5 ) плюс расстояние от точки В до точки касания (х). Применим теорему Пифагора (5+х)² = 8² +(3+х)² 25+10х+х²=64 +9+6х +х² 10х-6х+х²-х²=64 +9 - 25 10х-6х+х²-х²=64 +9 -25 4х=48 х=12 Гипотенуза равна 12+5=17 Радиус описанной окружности равен 17:2=8,5 см
По условию задачи радиус вписанной в данный треугольник обозначим его АВС, окружности равен 3 см ( от точки касания с до второго катета, которого касается окружность).
Имеем:
1-й катет СА=3+5=8см
2-й катет СВ =3+х ( х = расстояние от точки касания до вершины В)
Гипотенуза АВ =5+х.
Чтобы понять, почему, вспомним свойство 2-х касательных из одной точки к окружности. Расстояние от этой точки до точек касания равно.
Поэтому гипотенуза АВ равна расстоянию от вершины А до точки касания (5 ) плюс расстояние от точки В до точки касания (х).
Применим теорему Пифагора
(5+х)² = 8² +(3+х)²
25+10х+х²=64 +9+6х +х²
10х-6х+х²-х²=64 +9 - 25
10х-6х+х²-х²=64 +9 -25
4х=48
х=12
Гипотенуза равна 12+5=17
Радиус описанной окружности равен
17:2=8,5 см
Проверка по теореме Пифагора
17²=15²+8²
289 =225 +64
289 =289
Рисунок к задаче во вложении.