Точка k не лежит в плоскости трапеции abcd. через середины отрезков ka и kb проведена прямая ef (ab||cd) 1) докажите, что прямые ef и dc параллельны 2) определите вид четырёхугольника dcef, если ab: bc=2: 1
1) Через точки А, К и В можно провести ЕДИНСТВЕННУЮ плоскость. Значит эти точки лежат в одной плоскости и образуют треугольник, в котором EF - средняя линия (так как проходит через середины сторон АК и КВ). Средняя линия треугольника АКВ параллельна стороне АВ этого треугольника по определению. Итак, EF║AB, AB║CD (дано) => EF║DC, (если две прямые параллельны третьей, то они параллельны) что и требовалось доказать.
2) Итак, EF║DC, прямые ED и FC не параллельны, так как
EF =(1/2)·DC.
Четырехугольник DEFC - трапеция по определению (если две стороны параллельны, а две другие нет, то четырехугольник - трапеция).
В объяснении.
Объяснение:
1) Через точки А, К и В можно провести ЕДИНСТВЕННУЮ плоскость. Значит эти точки лежат в одной плоскости и образуют треугольник, в котором EF - средняя линия (так как проходит через середины сторон АК и КВ). Средняя линия треугольника АКВ параллельна стороне АВ этого треугольника по определению. Итак, EF║AB, AB║CD (дано) => EF║DC, (если две прямые параллельны третьей, то они параллельны) что и требовалось доказать.
2) Итак, EF║DC, прямые ED и FC не параллельны, так как
EF =(1/2)·DC.
Четырехугольник DEFC - трапеция по определению (если две стороны параллельны, а две другие нет, то четырехугольник - трапеция).