Существует ли многогранник с 2017 ребрами?

2Eliza8 2Eliza8    2   08.09.2019 19:30    1

Ответы
svetlanaastahov svetlanaastahov  07.10.2020 01:32

Количество ребер, выходящих из  каждой вершины многогранника, не меньше трех. 

Примем количество вершин равным а. Тогда ребер из всех вершин будет 3а. Но количество ребер посчитано дважды, т.к. одно ребро соединяет две вершины. Значит, всего ребер должно быть вдвое меньше.  И тогда количество ребер  3а/2=х

3а=2•х. Но число 2017 – простое, не имеет других делителей, кроме единицы и самого себя. Поэтому 2017≠2х,  независимо от того, сколько ребер выходят из каждой вершины многогранника.  

Следовательно,  многогранник с таким количеством ребер не существует. 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия