Сторона основи правильної чотірікутної призми дорівнюе 15 см, висота дорівнюе 20 см. Знайти найкоротшу відстань від Сторони основи до діагоналі призми, яка НЕ ​​перетинає її

mn2281488 mn2281488    3   15.01.2021 17:37    0

Ответы
Каримончик Каримончик  14.02.2021 17:38

Дано:

ABCDA₁B₁C₁D₁ - правильная четырехугольная призма

BC = 15 см

BB₁ = 20 см

-------------------------------------------------------------------------------------

Найти:

OK - ?

Проведем плоскость А₁В₁СD, а через ребро АВ проведем плоскость ABMN, перпендикулярную плоскости A₁B₁CD.

Так как АВ перпендикулярна боковым граням, то ABMN - прямоугольник.  

Пусть О — точка пересечения АС и MN. Проведем ОК⊥АВ. Тогда ОК = ВМ.

Так как ΔВВ₁С - прямоугольный (∠B₁BC = 90°), тогда используется во теореме Пифагора:

B₁C² = BB₁² + BC² ⇒ B₁C = √BB₁² + BC² - теорема Пифагора

B₁C = √(20 см)² + (15 см)² = √400 см² + 225 см² = √625 см² = 25 см

Далее мы находим площадь ΔВВ₁С по формуле Герона:

S(ΔВВ₁С) = √p(p-BC)(p-BB₁)(p-B₁C) - Формула Герона

p = BC+BB₁+B₁C/2 = 15 см + 20 см + 25 см / 2 = 60 см/2 = 30 см

S(ΔВВ₁С) = √30 см × (30 см - 15 см)×(30 см - 20 см)×(30 см - 25 см) = √30 см × 15 см × 10 см × 5 см = √22500 см⁴ = 150 см²

Далее мы воспользуемся площадью треугольника ВВ₁С по такой формуле:

S(ΔВВ₁С) = 1/2 × B₁C × BM - площадь треугольника

Следовательно по такой формуле мы находим высоту BM:

BM = 2S(ΔВВ₁С)/B₁C = 2×150 см²/25 см = 300 см²/25 см = 12 см ⇒ OK = BM = 12 см

ответ: OK = 12 см

P.S. Рисунок показан внизу↓


Сторона основи правильної чотірікутної призми дорівнюе 15 см, висота дорівнюе 20 см. Знайти найкорот
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия