Средняя линия трапеции длиной в 20 см делит ее диагональ на два отрезка, из которых один составляет 25% другого. определить основания трапеции. решить. решение нужно подробное
Пусть АВСД - трапеция, АД - нижнее основание, ВС - верхнее. ВД - диагональ, MN - средняя линия трапеции, О - точка пересечения диагонали со средней линией. Пусть х - длина отрезка МО, тогда 0,25*х - длина отрезка ОN. По условию длина средней линии 20 см, то есть х + 0,25*х = 20, откуда 1,25*х = 20 см х = 16 см Получаем отрезок МО = 16 см, это средняя линия треугольника АВД, поэтому сторона этого треугольника АД = 2*МО = 32 см, это нижнее основание трапеции. Отрезок ОN = 0,25*МО = 4 см, это средняя линия треугольника ДВС, поэтому сторона этого треугольника ВС = 2*ОN = 8 см, это верхнее основание трапеции. ответ: основания трапеции 32 см и 8 см.
MN - средняя линия трапеции, О - точка пересечения диагонали со средней линией.
Пусть х - длина отрезка МО, тогда 0,25*х - длина отрезка ОN.
По условию длина средней линии 20 см, то есть
х + 0,25*х = 20, откуда
1,25*х = 20 см
х = 16 см
Получаем отрезок МО = 16 см, это средняя линия треугольника АВД, поэтому
сторона этого треугольника АД = 2*МО = 32 см, это нижнее основание трапеции.
Отрезок ОN = 0,25*МО = 4 см, это средняя линия треугольника ДВС, поэтому
сторона этого треугольника ВС = 2*ОN = 8 см, это верхнее основание трапеции.
ответ: основания трапеции 32 см и 8 см.