Сможно не на все отвечать главное правильное решение) 1) в прямоугольнике диагональ равная d делит угол в отношении p: q. найдите периметр треугольника 2)в равнобокой трапеции высота равна h, а угол между диагоналями, противолежащий боковой стороне, равен (альфа) . найдите среднюю линию трапеции.
Пусть один острый угол pk°, второй qk°.
pk+qk=90
k=90/(p+q)
Один угол 90p/(p+q) градусов, второй 90q/(p+q) градусов.
Стороны прямоугольника
d·cos(90p/(p+q) ) и d·cos(90q/(p+q) )
Р=2·(d·cos(90p/(p+q) ) + d·cos(90q/(p+q) ))
2) Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О.
Проведем высоту через точку пересечения диагоналей.
Высота делит основания равнобедренной трапеции пополам.
Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x).
BC/2=x·tg((180°-α)/2)
AD/2=(h-x)· tg((180°-α)/2)
Средняя линия трапеции равна полусумме оснований.
MN=(BC+AD)/2=(BC/2)+(AD/2)=x·tg((180°-α)/2) +(h-x)· tg((180°-α)/2) =
=tg((180°-α)/2)(x+h-x)=h·tg((180°-α)/2)=h·tg(90°-(α/2))