С. прямоугольник abcd перегнули по диагонали bd так, что плоскости abd и cbd оказались перпендикулярными. найдите расстояние между точками а и с, если меньшая из сторон прямоугольника равняется 4 см, а угол между его диагоналями - 60°.

zina0155 zina0155    3   20.09.2019 09:20    21

Ответы
busiginaev2015 busiginaev2015  21.08.2020 12:22

Дано: ABCD – прямоугольник, (ABD) ⊥ (CBD), AB = 4 см, ∠AOB = 60°

Найти: AC (после сгиба)

1) До сгиба:

ΔAOB – равносторонний  АО = ВО = 4 см  АС = BD = 2 × 4 = 8 см

2) После сгиба:

ΔBAD (∠BAD = 90°):

По теореме Пифагора: AD = √BD² – AB² = √8² – 4² = √64 – 16 = √48 = 4√3 см

AK = AB × AD / BD = 4 × 4√3 / 8 = 2√3 см = MC

ΔAKB (∠AKB = 90°):

По теореме Пифагора: BK = √AB² – AK² = √4² – (2√3)² = √16 – 12 = √4 = 2 см

BK = MD = 2 см

KM = BD – (BK + MD) = 8 – (2 + 2) = 4 см

ΔKMC (∠KMC = 90°):

По теореме Пифагора: KC = √KM² + MC² = √4² + (2√3)² = √16 + 12 = √28 = 2√7 см

ΔAKC (∠AKC = 90):

По теореме Пифагора: AC = √AK² + KC² = √(2√3)²  + (2√7)² = √12 + 28 = √40 = 2√10 см


С. прямоугольник abcd перегнули по диагонали bd так, что плоскости abd и cbd оказались перпендикуляр
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия