Равнобедренный треугольник abc (ac=bc) вписан в окружность с центром o. известно, что ab=6, do=4, где d — основание перпендикуляра из o на ab. найдите площадь треугольника abc
Извините, без рисунка, попробуйте врубиться в текст. Просто нет возможности файл грузить.
R=АО - радиус описанной окружности найдем из ΔАОД. АО=√(АД²+ДО²)
Т.к. треуг. АВС равнобедренный, то Д-середина АВ, т.к. ОД лежит на биссектрисе СД, а, значит, что то же самое, что и на медиане СД, АД=6/2=3
ДО =4, тогда АО =√(9+16)=5
А т.к. центр окружности лежит на пересечении биссектрис, то поднимая биссектрису, а заодно и высоту ДО до точки С, на расстояние радиуса =5, получим, что СД- высота =4+5=9
Зная основание и высоту, можно найти площадь треугольника.
Извините, без рисунка, попробуйте врубиться в текст. Просто нет возможности файл грузить.
R=АО - радиус описанной окружности найдем из ΔАОД. АО=√(АД²+ДО²)
Т.к. треуг. АВС равнобедренный, то Д-середина АВ, т.к. ОД лежит на биссектрисе СД, а, значит, что то же самое, что и на медиане СД, АД=6/2=3
ДО =4, тогда АО =√(9+16)=5
А т.к. центр окружности лежит на пересечении биссектрис, то поднимая биссектрису, а заодно и высоту ДО до точки С, на расстояние радиуса =5, получим, что СД- высота =4+5=9
Зная основание и высоту, можно найти площадь треугольника.
9*6/2=27/ед.кв./