Расстояние между центрами окружностей радиусов 2 и 1 равно . найдите площади образовавшихся луночек и общей части кругов.

zippops zippops    1   04.06.2019 01:30    25

Ответы
KarinkaChernov KarinkaChernov  05.07.2020 07:37
AO₁ = 2 , AO₂ = 1 , O₁O₂ = √3Для ΔАО₁О₂ выполняется теорема Пифагора: АО₁² = О₁О₂² + АО₂² ;  2² = (√3)² + 1²  ;  4 = 4  ⇒  ΔАO₁O₂ - прямоугольный, O₁O₂⊥ABΔАО₁В - равнобедренный, АО₁ = BO₁ = 2 ⇒ O₁O₂⊥AB, AO₂ = BO₂ = 1AO₁ = BO₁ = AB = 2  ⇒ ΔAO₁B - равностороннийПлощадь круга с радиусом R₁ = 2:  S₁ = πR₁² = 4πПлoшадь круга с радиусом R₂ = 1:  S = π  S ao₁b = AB²√3/4 = 4√3/4 = √3Площадь ме'ньшего сектора, соединяющего точки А, О₁, В:S сек. = πR₁²•α/360° = π•R₁²•∠AO₁B/360° = 4π•60°/360° = 2π/3S ceк. = S ao₁b + SS = S сек. - S ao₁b = (2π/3) - √3Площадь общей части кругов:  S₃ = (S₂/2) + S = (π/2) + (2π/3) - √3 = (7π/6) - √3Площадь бо'льшей луночки: S₄ = S₁ - S₃ = 4π - (  (7π/6) - √3  ) = 4π - (7π/6) + √3 = (17π/6) + √3Площадь ме'ньшей луночки: S₅ = (S₂/2) - S = (π/2) - (  (2π/3) - √3  ) = (π/2) - (2π/3) + √3 = √3 - (π/6)
Расстояние между центрами окружностей радиусов 2 и 1 равно . найдите площади образовавшихся луночек
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия