(р/б - равнобедренный) в р/б треугольнике ABC проведена медиана BD. На боковой стороне отмечены точки K и M так что AK=CM.Доказать что треугольник KMD-р/б
Для доказательства того, что треугольник KMD является равнобедренным, нам нужно рассмотреть несколько шагов.
Шаг 1: Нам нужно исследовать свойства равнобедренного треугольника. В равнобедренном треугольнике две стороны равны между собой. В нашем случае, нам дано, что AK=CM.
Шаг 2: Рассмотрим треугольник AKD. Мы знаем, что BD является медианой в треугольнике ABC, поэтому она делит сторону AC пополам. То есть, AC=2BD.
Шаг 3: Также известно, что в равнобедренном треугольнике две прилежащие грани угла, образуемого основанием и медианой, равны. В нашем случае, AD=DС, так как BD делит сторону AC пополам.
Шаг 4: Пользуясь указанными выше фактами, мы можем сказать, что AK=MC=2BD/2=BD=AD=DC. Таким образом, треугольник KMD имеет две равные стороны и, следовательно, является равнобедренным.
Таким образом, мы доказали, что треугольник KMD является равнобедренным.
Шаг 1: Нам нужно исследовать свойства равнобедренного треугольника. В равнобедренном треугольнике две стороны равны между собой. В нашем случае, нам дано, что AK=CM.
Шаг 2: Рассмотрим треугольник AKD. Мы знаем, что BD является медианой в треугольнике ABC, поэтому она делит сторону AC пополам. То есть, AC=2BD.
Шаг 3: Также известно, что в равнобедренном треугольнике две прилежащие грани угла, образуемого основанием и медианой, равны. В нашем случае, AD=DС, так как BD делит сторону AC пополам.
Шаг 4: Пользуясь указанными выше фактами, мы можем сказать, что AK=MC=2BD/2=BD=AD=DC. Таким образом, треугольник KMD имеет две равные стороны и, следовательно, является равнобедренным.
Таким образом, мы доказали, что треугольник KMD является равнобедренным.