Прямая, параллельная стороне AC треугольника АВС, пересекает сторону АВ в точке М, а сторону ВС в точке N, причём NВ = 5 см, МN = 7 см, АС = 21 см. Найдите NC. ответ дайте в сантиметрах.

sadyk771 sadyk771    1   07.04.2020 07:20    45

Ответы
SofyaProstova SofyaProstova  26.12.2023 18:45
Добрый день! Давай решим эту задачу поэтапно.

Шаг 1: Нарисуем треугольник АВС и отметим данные, которые нам даны.

B
/ \
/ \
N /__________\ M
/ \
/____________________\
A C

Мы знаем, что АС = 21 см, NВ = 5 см и МN = 7 см. Наша задача - найти NC.

Шаг 2: Используем свойство параллельных прямых.

Мы знаем, что прямая, проходящая через точки М и N, параллельна стороне AC. Используя это свойство параллельных прямых, мы можем заметить, что треугольник АNM подобен треугольнику АСB.

Шаг 3: Найдем соотношение сторон треугольников АNM и АСB.

Для того чтобы показать подобие треугольников, мы можем использовать соотношение сторон. Заметим, что сторона АС треугольника АСB является продолжением стороны АN треугольника АNM. Тогда мы можем использовать отношение сторон:

AC/AN = CB/CM (Соотношение сторон треугольников)

AC/AN = CB/CM (Условие задачи)

21/AN = CB/CM (Подставляем известные значения)

Шаг 4: Найдем неизвестное значение CB.

Для того, чтобы найти неизвестное значение CB, нам нужно избавиться от неизвестной CM в уравнении. Заметим, что сторона CB треугольника АСB является продолжением стороны МN треугольника АNM. Поэтому мы можем использовать отношение сторон:

MN/MC = AN/AC (Соотношение сторон треугольников)

7/CM = AN/21 (Подставляем известные значения)

Шаг 5: Найдем неизвестное значение AN.

Теперь нам нужно избавиться от неизвестной AN в уравнении. Мы можем использовать отношение сторон треугольников:

AN/AC = MN/MC (Соотношение сторон треугольников)

AN/21 = 7/CM (Подставляем известные значения)

Шаг 6: Мы получили систему уравнений с двумя неизвестными CB и AN.

21/AN = CB/CM
AN/21 = 7/CM

Шаг 7: Решение системы уравнений.

Мы можем использовать метод подстановки или метод равных коэффициентов для решения этой системы уравнений.
Давай используем метод равных коэффициентов.

AN/21 = 7/CM

Перемножим обе стороны этого уравнения:

AN/21 * CM/7 = 7/CM * CM/7

AN * CM / 147 = 1

AN * CM = 147

AN = 147/CM

Теперь подставим это значение в первое уравнение системы:

21/AN = CB/CM

21/(147/CM) = CB/CM

Нам нужно избавиться от CM в этом уравнении:

21*CM/147 = CB/CM

CB = 21*CM/147

Шаг 8: Найдем значение NC.

Мы знаем, что NC = AN - NВ. Подставим значения AN и NВ:

NC = 147/CM - 5

Шаг 9: Найдем значение CM.

Мы знаем, что NM + MC = NВ, поэтому MC = NВ - NM.

MC = 5 - 7

MC = -2

Но так как нам нужно значение в сантиметрах, значение отрицательной длины не имеет физического смысла. Поэтому, задача имеет два решения: NC = 147/CM - 5, где CM = 2 или значение NC является неопределенным.

Таким образом, ответ на вопрос задачи "Найдите NC" - NC = 147/2 - 5 = 73.5 - 5 = 68.5 сантиметра.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия