По ! km и kn - отрезки касательных, проведенных из точки k к окружности с центром о. найдите эти отрезки, если ок=12 см, угол моn=120 градусов.

Рюка Рюка    3   03.06.2019 18:40    0

Ответы
astraelenap01fez astraelenap01fez  01.10.2020 18:40
MO=ON(Т.К. РАДИУСЫ)
Доказываем равенство треугольников по свойству касательных из одной точки,
Тогда угол KON=MOK и они по 60 градусов. 120/2=60 градусов.
Есть два прямоугольных треугольника. Радиусы ON и OM находятся по свойство угла в 30 градусов, т.е.
2ON=OK
2ON=12 /2(ДЕЛИЛИ ОБЕ ЧАСТИ)
ON=6 
Затем находим всё по теореме Пифагора.
KN+ON=OK(все величины в квадрате)
KN2+36=144
KN2=144-36=108 градусов.
корень из KN=корень из 108 радусов и это 6 корней из 3.
KN=KM(по свойству отрезков касательных)
ответ:KN=KM=6 корней из 3.
ПОКАЗАТЬ ОТВЕТЫ
Jirnyi Jirnyi  01.10.2020 18:40
Отрезки касательных, проведённых из одной точки к окружности равны и образуют равные углы с прямой, проходящей через центр окружности и точку, из которой проведены касательные, поэтому МК=КN, угол ОКN=углу ОКМ, угол ОМК=углу ОNК=90 градусов по свойству касательных, тогда угол КОТ= углу КОМ=120:2=60 градусов. По соотношениям в прямоугольном треугольнике КМ=ОК*sin60=12*√3/2=6√3
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия